
Introduction
Results

Conclusions

Examining Large-Scale Regional Variation Through
Online Geotagged Corpora

Brice Russ

Department of Linguistics
The Ohio State University

http://www.ling.osu.edu/~rbruss

2012 ADS Annual Meeting

Brice Russ Dialect Geography on Twitter

http://www.ling.osu.edu/~rbruss


Introduction
Results

Conclusions

Theory and Background
Prior Research
Data Collection and Processing

Research Question

Are textual corpora, collected from the Internet and tagged
for location, feasible sources for creating dialect maps and
studying regional variation?

(e.g. Twitter)
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Motivating Implications

Online corpora provide more data more quickly

Language observed in conversational settings, rather than
elicited

Allows for collection of more variables, more speakers with less
supervision
Can track the spread of linguistic variables in (quasi-)real time
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Outline

Why (and how) Twitter can be used to study dialect variation

Distribution of three variables:

Soft drink terminology (‘soda’/‘pop’/‘coke’)
Intensifier ‘hella’ (vs. ‘very’)
The ‘needs X-ed’ construction

Findings and conclusions
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Introduction To Twitter

Microblogging service available via WWW, SMS

Send publicly available messages of ≤ 140 characters
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User Profile
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Twitter as Data Source

Very prolific source of textual linguistic data

200 million tweets/day as of August 2011

Used for conversational and informal purposes
(Honeycutt and Herring 2009, Smith 2011)

Exhibits diversity in age, gender, social class
(Smith and Rainie 2010)
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Diversity Patterns on Twitter (Smith and Rainie)
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Social Patterns on Twitter

Twitter used to conduct public-opinion polling
(O’Connor et al. 2010), predict box-office revenues
(Asur and Huberman, 2010)

Eisenstein et al. (2010) and Bamman (2010) have studied
textual/lexical variation on the macro-level

Eisenstein et al. use topic models to predict user location
Topics include both regional variables (‘hella’) and cultural
markers (food, sports teams)
Demonstrates general existence of regional variation on Twitter
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Data Collection

Collected tweets using Python script calling Streaming API
(Paul 2010), given a set of keywords predetermined by user

Non-spoken data
Difficult to examine phonetic/phonological variation

Data collected in spring and summer of 2011 (primarily June -
August)

Script collects tweet and location of the tweeting user

Cities represent current location of speakers, not origin

Regular expression used to filter out ‘non-locations’

‘Re-tweets’ (forwarded posts) are excluded
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Sample Data

Toronto, ON I remember when people would try and pear pressure me to
Drink pop and they’d say no one will no. Wrong, I’ll know.

Birmingham, AL @mhirsh32 Would probably be opening a can of soda/ bottle
of water, drinking a sip or two, then never touching it again.
Still thinking.....

MIC CITY, TX To stop drinking soda, I imagine the same yucky feeling I
get when I see ppl lifting cigarettes to their lips...so far, it’s
working!

Washington, DC Eric Weaver gives honest view that his org is doing what
they do as a subsidized service. Not everyone ”needs” 2 be
profit driven #mfusa2011

Secane, PA Drinking diet soda doesn’t do shit when you’ve got a familt
sized bag of nacho cheese combos and a twix bar in front
of you too.

Dallas, TX Fired up my Crock Pot for this first time this morning.
Picked recipe that needs to cook for 10 hours so it should
be ready when I get home.
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Homographic Ambiguity

Variables exhibit lexical ambiguity

Example: ‘pop’

“im startin to feel like its bad to drink pop haha”
“he would give us a pop quiz at 8 in the morning”
“I have this thing for Pop Tarts.”

Must distinguish the appropriate sense from homographs
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Collocations

Categorize variants by co-occurring words/phrases

Common sense-disambiguators in corpus linguistics
(e.g. Biber et al. 1998)

Manually select most frequent collocations with the desired
sense/meaning

Example: ‘pop’

pop {out, up, under}
pop {music, artist, album}
{drink, drinking} pop
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Variables

Mapped using Google Fusion Tables software

‘soda’/‘pop’/‘coke’

‘hella’/‘very’

‘needs X-ed’
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Variable #1: ‘soda’/‘pop’/‘coke’
Variable #2: ‘hella’/‘very’
Variable #3: ‘needs X-ed’

Map Comparison: Soda vs. pop vs. coke

Account for over 90% of soft drink variation (Vaux 2003)

‘Pop’ predominant in Midwest to Pacific Northwest
‘Coke’ predominant in the South (South Carolina to Texas)
‘Soda’ used everywhere, but used exclusively in New England
and Southwest
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Variable #1: ‘soda’/‘pop’/‘coke’
Variable #2: ‘hella’/‘very’
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Dialect map plotted from Twitter corpus

(yellow = ‘pop’; red = ‘coke’; blue = ‘soda’)
2,952 tweets, 1,118 locations
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Dialect map plotted from Harvard Dialect Survey
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New Research: ‘hella’/‘very’

‘Hella’ as an intensifier (in similar environment to ‘very’)

“Man this lab class is hella boring...”
“its a very boring bible belt city unless you work for a bank”

Associated perceptually with ‘Northern California’ (Bucholtz
et al. 2007), but usage has only been examined anecdotally
(Bucholtz 2007)

Collocates used here to remove non-similar environments
(‘hella {people, ppl, followers, money}’)
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Over 300,000 data points:

(yellow = ‘very’; red = ‘hella’)
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5-binned map
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Silicon Valley speakers are hella standard
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Silicon Valley speakers are hella standard

City ‘very’ ‘hella’ % ‘hella’

Mountain View, CA 317 3 0.9%
Santa Clara, CA 111 19 14.6%
San Jose, CA 768 367 22.3%
Sacramento, CA 1115 1262 53.1%
Oakland, CA 695 1307 62.6%
Vallejo, CA 70 374 84.2%
Columbus, OH 1483 105 6.6%

Comparison of very/hella usage in Northern California cities
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Morphosyntax: ‘needs X-ed’

‘need + (past participle)’ common in Midwest
(Murray et al. 1996)

Varies with ‘needs X-ing’ and ‘needs to be X-ed’
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Prior attestation of ‘needs X-ed’

(from Murray et al. 1996)

Selected verbs: ‘done’, ‘fixed’, ‘fired’, ‘washed’, ‘filled’

6,406 data points, 1,884 locations
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The ‘needs’ of the many...

Dark areas (Northeast, etc.) represent overlap of data points
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Range from Murray et al.: Illinois to New Jersey
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Focus on ‘Midwest’ region

Diffusion southward since Murray et al? (cf. Ulrey 2009)

Brice Russ Dialect Geography on Twitter



Introduction
Results

Conclusions

Summary
Future Concerns
The End

Conclusions

Twitter is a very promising source for studying regional
variation

Data can be collected easily and effectively without
interviews, supervision

Most effective with common lexical variables

Collocations can prove useful in defining variable contexts
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Future Research Goals

Improve data collection, mapping processes

Present version of program for public use

Python script available; standalone application forthcoming
Tools for corpora collection, collocation, mapping

Explore larger corpora

Library of Congress Twitter Corpus in development
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Thank you!

Thanks also to:

Kathryn Campbell-Kibler

Chris Brew

Brian Joseph

Changelings, Clippers, and the attendees of GURT 2011

Bert Vaux

Jacob Eisenstein

Pete Warden

Walt Wolfram

...and many others!
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Contact

rbruss@ling.osu.edu
Twitter: @kilroywashere

Maps and script available at:
http://www.briceruss.com/ADStalk
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Is Coke It?

Corpus #1 does not include tweets using:

Coca-Cola

Diet Coke, Cherry Coke, etc.

Capitalized ‘Coke’

‘drinking a coke’

Can Coke(brand) and Coke(drink) be fully disambiguated?
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Data Collection Procedure

1 Script sends keyword requests (‘soda’/‘pop’/‘coke’) for
Twitter live public (> 90%) stream

2 Twitter removes spam-like tweets from stream

3 Twitter sets access level (10 tweets out of every 100)

4 Twitter returns all tweets matching keyword, rate-limited
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Spam Cleaning Process

Twitter removes accounts or tweets from the stream which:

Repeatedly post duplicate tweets or links

Post the same message over multiple accounts

Aggressively follow and unfollow accounts

Abuse ‘trending topics’ or hashtags

(e.g. “Get a loan from Unscrupulous Bank! #justinbieber
#chicagobulls #twowordanswers”)
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Disambiguation Through Collocation Groups

soda pop coke
a soda 770 to pop 3397 diet coke 1482
diet soda 637 pop up 2961 and coke 1030
soda and 576 a pop 1748 a coke 872
of soda 401 pop in 1362 coke and 700
orange soda 363 pop culture 1254 of coke 577
and soda 332 pop music 1240 the coke 332
baking soda 319 pop out 1042 coke in 250
drink soda 293 and pop 820 coke is 219
soda is 284 the pop 787 & coke 214
the soda 256 pop a 781 cherry coke 211
soda on 224 of pop 749 coke zero 182
cream soda 219 pop off 649 coke bottle 160
drinking soda 219 pop star 509 on coke 147
... ... pop the 501 coke with 145
... ... pop it 479 my coke 133
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soda on 224 of pop 749 coke zero 182
cream soda 219 pop off 649 coke bottle 160
drinking soda 219 pop star 509 on coke 147
soda in 212 pop the 501 coke with 145
grape soda 211 pop it 479 my coke 133
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